skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Swartz, Doug"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aims.We aim to probe the magnetic field geometry and particle acceleration mechanism in the relativistic jets of supermassive black holes. Methods.We conducted a polarimetry campaign from radio to X-ray wavelengths of the high-synchrotron-peak (HSP) blazar Mrk 421, including Imaging X-ray Polarimetry Explorer (IXPE) measurements from 2022 December 6–8. During the IXPE observation, we also monitored Mrk 421 usingSwift-XRT and obtained a single observation withXMM-Newtonto improve the X-ray spectral analysis. The time-averaged X-ray polarization was determined consistently using the event-by-event Stokes parameter analysis, spectropolarimetric fit, and maximum likelihood methods. We examined the polarization variability over both time and energy, the former via analysis of IXPE data obtained over a time span of 7 months. Results.We detected X-ray polarization of Mrk 421 with a degree of ΠX = 14 ± 1% and an electric-vector position angleψX = 107 ± 3° in the 2–8 keV band. From the time variability analysis, we find a significant episodic variation inψX. During the 7 months from the first IXPE pointing of Mrk 421 in 2022 May,ψXvaried in the range 0° to 180°, while ΠXremained relatively constant within ∼10–15%. Furthermore, a swing inψXin 2022 June was accompanied by simultaneous spectral variations. The results of the multiwavelength polarimetry show that ΠXwas generally ∼2–3 times greater than Π at longer wavelengths, whileψfluctuated. Additionally, based on radio, infrared, and optical polarimetry, we find that the rotation ofψoccurred in the opposite direction with respect to the rotation ofψXand over longer timescales at similar epochs. Conclusions.The polarization behavior observed across multiple wavelengths is consistent with previous IXPE findings for HSP blazars. This result favors the energy-stratified shock model developed to explain variable emission in relativistic jets. We considered two versions of the model, one with linear and the other with radial stratification geometry, to explain the rotation ofψX. The accompanying spectral variation during theψXrotation can be explained by a fluctuation in the physical conditions, for example in the energy distribution of relativistic electrons. The opposite rotation direction ofψbetween the X-ray and longer wavelength polarization accentuates the conclusion that the X-ray emitting region is spatially separated from that at longer wavelengths. Moreover, we identify a highly polarized knot of radio emission moving down the parsec-scale jet during the episode ofψXrotation, although it is unclear whether there is any connection between the two events. 
    more » « less